Transcriptional profiling reveals elevated CO2 and elevated O3 alter resistance of soybean (Glycine max) to Japanese beetles (Popillia japonica).

نویسندگان

  • Clare L Casteel
  • Bridget F O'Neill
  • Jorge A Zavala
  • Damla D Bilgin
  • May R Berenbaum
  • Evan H Delucia
چکیده

The accumulation of CO2 and O3 in the troposphere alters phytochemistry which in turn influences the interactions between plants and insects. Using microarray analysis of field-grown soybean (Glycine max), we found that the number of transcripts in the leaves affected by herbivory by Japanese beetles (Popillia japonica) was greater when plants were grown under elevated CO2, elevated O3 and the combination of elevated CO2 plus elevated O3 than when grown in ambient atmosphere. The effect of herbivory on transcription diminished strongly with time (<1% of genes were affected by herbivory after 3 weeks), and elevated CO2 interacted more strongly with herbivory than elevated O3. The majority of transcripts affected by elevated O3 were related to antioxidant metabolism. Constitutive levels and the induction by herbivory of key transcripts associated with defence and hormone signalling were down-regulated under elevated CO2; 1-aminocyclopropane-1-carboxylate (ACC) synthase, lipoxygenase (LOX), allene oxide synthase (AOS), allene oxide cyclase (AOC), chalcone synthase (CHS), polyphenol oxidase (PPO) and cysteine protease inhibitor (CystPI) were lower in abundance compared with levels under ambient conditions. By suppressing the ability to mount an effective defence, elevated CO2 may decrease resistance of soybean to herbivory.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Impacts of Climate Change on Herbivore Induced Plant Signaling and Defenses

The accumulation of CO2 and O3 in the troposphere alters phytochemistry which in turn influences the interactions between plants and insects. Using microarray analysis of field-grown soybean (Glycine max), we found that the number of transcripts in the leaves affected by herbivory by Japanese beetles (Popillia japonica) was greater when plants were grown under elevated CO2, elevated O3 and the ...

متن کامل

Impact of elevated CO2 and increased temperature on Japanese beetle herbivory.

To examine how the major elements of global change affect herbivory in agroecosystems, a multifactorial experiment was conducted where soybeans were grown at two levels of carbon dioxide and temperature, including those predicted for 2050, under otherwise normal field conditions. Japanese beetles (Popillia japonica Newman) were enclosed on foliage for 24 h, after which the beetle survivorship, ...

متن کامل

PLANTÐINSECT INTERACTIONS Anthropogenic Changes in Tropospheric Composition Increase Susceptibility of Soybean to Insect Herbivory

Increased concentrations of CO2 and ozone are predicted to lower nutritional quality of leaves for insect herbivores, which may increase herbivory as insects eat more to meet their nutritional demands. To test this prediction, we measured levels of herbivory in soybean grown in ambient air and air enriched with CO2 or O3 using free air gas concentration enrichment (FACE). Under open-air conditi...

متن کامل

Longevity and fecundity of Japanese beetle (Popillia japonica) on foliage grown under elevated carbon dioxide.

Atmospheric levels of carbon dioxide (CO(2)) have been increasing steadily over the last century. Plants grown under elevated CO(2) experience physiological changes that influence their suitability as food. Previous studies have found increased insect herbivory on plants grown under elevated CO(2). To determine effects of consuming foliage of soybean (Glycine max) grown under elevated CO(2) on ...

متن کامل

Anthropogenic increase in carbon dioxide compromises plant defense against invasive insects.

Elevated levels of atmospheric carbon dioxide (CO2), a consequence of anthropogenic global change, can profoundly affect the interactions between crop plants and insect pests and may promote yet another form of global change: the rapid establishment of invasive species. Elevated CO2 increased the susceptibility of soybean plants grown under field conditions to the invasive Japanese beetle (Popi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant, cell & environment

دوره 31 4  شماره 

صفحات  -

تاریخ انتشار 2008